UNIVERSITY PARK, Pa. — A clearer understanding of how a type of brain cell known as astrocytes function and can be emulated in the physics of hardware devices, may result in artificial intelligence (AI) and machine learning that autonomously self-repairs and consumes much less energy than the technologies currently do, according to a team of Penn State researchers.
Astrocytes are named for their star shape and are a type of glial cell, which are support cells for neurons in the brain. They play a crucial role in brain functions such as memory, learning, self-repair and synchronization.
"This project stemmed from recent observations in computational neuroscience, as there has been a lot of effort and understanding of how the brain works and people are trying to revise the model of simplistic neuron-synapse connections,” said Abhronil Sengupta, assistant professor of electrical engineering and computer science. “It turns out there is a third component in the brain, the astrocytes, which constitutes a significant section of the cells in the brain, but its role in machine learning and neuroscience has kind of been overlooked.”
At the same time, the AI and machine learning fields are experiencing a boom. According to the analytics firm Burning Glass Technologies, demand for AI and machine learning skills is expected to increase by a compound growth rate of 71% by 2025. However, AI and machine learning faces a challenge as the use of these technologies increase — they use a lot of energy.
"An often-underestimated issue of AI and machine learning is the amount of power consumption of these systems,” Sengupta said. “A few years back, for instance, IBM tried to simulate the brain activity of a cat, and in doing so ended up consuming around a few megawatts of power. And if we were to just extend this number to simulate brain activity of a human being on the best possible supercomputer we have today, the power consumption would be even higher than megawatts.”
All this power usage is due to the complex dance of switches, semiconductors and other mechanical and electrical processes that happens in computer processing, which greatly increases when the processes are as complex as what AI and machine learning demand. A potential solution is neuromorphic computing, which is computing that mimics brain functions. Neuromorphic computing is of interest to researchers because the human brain has evolved to use much less energy for its processes than do a computer, so mimicking those functions would make AI and machine learning a more energy-efficient process.
Another brain function that holds potential for neuromorphic computing is how the brain can self-repair damaged neurons and synapses.